Application of machine learning technique for dynamic analysis of confined geomaterial subjected to vibratory load

Author:

Boban AmmuORCID,Pateriya PreetiORCID,Kumar YakshanshORCID,Gaur KshitijORCID,Trivedi AshutoshORCID

Abstract

AbstractComputer programming-based numerical programs are firmly established in geotechnical engineering, with rapid growth of finite element modeling and machine learning techniques gaining much attention both in practice and academia. This study is intended to expedite the dissemination of advanced computer applications in terms of finite element simulation and machine learning models by investigating the dynamic response of geomaterials subjected to vibratory loads. Several trial models were built to perform the experimental investigations with a vibratory shaker, signal generator, several accelerometers, a data collection system, and other ancillary devices. The implicit integration techniques in commercialized software were adopted for numerical simulations. After data collection from numerical simulation, models were chosen, trained, and assessed to produce predictions that were then used in this study. Several technologies, including the ensemble boosted tree, squared exponential Gaussian Process Regression (GPR), Matern 5/2 GPR, exponential GPR, and decision tree architectures (fine and medium), were used to forecast the displacement of confined geomaterial. The displacement-depth ratio was found rising to 80% in the frequency range of 5 to 25 Hz, suggesting a considerable change in the behavior of the geomaterial. The Matern 5/2 GPR model showed better accuracy with an R2 value of 0.99, indicating an outstanding predictive ability. The Matern 5/2 GPR and boosted tree models could help better understand the links between displacement and its distribution along the direction of load application. The outcomes of this study based on computer-aided finite element programs can be effectively implemented in machine learning to develop computer programs. In conclusion, the computational machine learning models adopted in this study offer a new insight for uncovering hidden intrinsic laws and creating new knowledge for geotechnical researchers and practitioners.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3