Domain adversarial training for classification of cracking in images of concrete surfaces

Author:

Oliveira Santos BrunoORCID,Valença Jónatas,Costeira João P.,Julio Eduardo

Abstract

AbstractThe development of automatic methods to recognize cracks in surfaces of concrete has been under focus in recent years, firstly through computer vision methods and more recently focusing on convolutional neural networks that are delivering promising results. Challenges are still persisting in crack recognition, namely due to the confusion added by the myriad of elements commonly found on concrete surfaces. The robustness of these methods would deal with these elements if access to correspondingly heterogeneous datasets was possible. Even so, this would be a cumbersome methodology, since training would be needed for each particular case and models would be case dependent. Thus, efforts from the scientific community are focusing on generalizing neural network models to achieve high performance in images from different domains, slightly different from those in which they were effectively trained. The generalization of networks can be achieved by domain adaptation techniques at the training stage. Domain adaptation enables finding a feature space in which features from both domains are invariant, and thus, classes become separable. The work presented here proposes the DA-Crack method, which is a domain adversarial training method, to generalize a neural network for recognizing cracks in images of concrete surfaces. The domain adversarial method uses a convolutional extractor followed by a classifier and a discriminator, and relies on two datasets: a source labeled dataset and a target unlabeled small dataset. The classifier is responsible for the classification of images randomly chosen, while the discriminator is dedicated to uncovering to which dataset each image belongs. Backpropagation from the discriminator reverses the gradient used to update the extractor. This enables fighting the convergence promoted by the updating backpropagated from the classifier, and thus generalizing the extractor enabling it for crack recognition of images from both source and target datasets. Results show that the DA-Crack training method improved accuracy in crack classification of images from the target dataset in 54 percentage points, while accuracy on the source dataset remains unaffected.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Springer Science and Business Media LLC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3