AI art in architecture

Author:

Ploennigs JoernORCID,Berger MarkusORCID

Abstract

AbstractRecent diffusion-based AI art platforms can create impressive images from simple text descriptions. This makes them powerful tools for concept design in any discipline that requires creativity in visual design tasks. This is also true for early stages of architectural design with multiple stages of ideation, sketching and modelling. In this paper, we investigate how applicable diffusion-based models already are to these tasks. We research the applicability of the platforms Midjourney, DALL$$\cdot$$ · E 2 and Stable Diffusion to a series of common use cases in architectural design to determine which are already solvable or might soon be. Our novel contributions are: (i) a comparison of the capabilities of public AI art platforms; (ii) a specification of the requirements for AI art platforms in supporting common use cases in civil engineering and architecture; (iii) an analysis of 85 million Midjourney queries with Natural Language Processing (NLP) methods to extract common usage patterns. From this we derived (iv) a workflow for creating images for interior designs and (v) a workflow for creating views for exterior design that combines the strengths of the individual platforms.

Publisher

Springer Science and Business Media LLC

Reference19 articles.

1. Borji, A. (2022). Generated faces in the wild: Quantitative comparison of stable diffusion, midjourney and DALL-E 2. arXiv preprint http://arxiv.org/abs/2210.00586.

2. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., & Agarwal, S. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877–901.

3. Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Nips, 33, 6840–6851.

4. Ho, J., Salimans, T., Gritsenko, A.A., Chan, W., Norouzi, M., & Fleet, D.J. (2022). Video diffusion models. ICLR workshop on deep generative models for highly structured data.

5. Kawar, B., Zada, S., Lang, O., Tov O, Chang, H., Dekel, T., Mosseri, I., & Irani, M. (2022). Imagic: Text-based real image editing with diffusion models. arXiv preprint http://arxiv.org/abs/2210.09276.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3