Estimating the density of small mammals using the selfie trap is an effective camera trapping method

Author:

Gracanin AnaORCID,Minchinton Todd E.,Mikac Katarina M.

Abstract

Abstract Camera trapping to study wildlife allows for data collection, without the need to capture animals. Traditionally, camera traps have been used to target larger terrestrial mammal species, though recently novel methods and adjustments in procedures have meant camera traps can be used to study small mammals. The selfie trap (a camera trapping method) may present robust sampling and ecological study of small mammals. This study aimed to evaluate the selfie trap method in terms of its ability to detect species and estimate population density. To address this aim, standard small mammal live trapping was undertaken, immediately followed by camera trapping using the selfie trap. Both methods were set to target the arboreal sugar glider (Petaurus breviceps) and semi-arboreal brown antechinus (Antechinus stuartii). The more ground-dwelling bush rat (Rattus fuscipes) was also live trapped and recorded on camera. Across four survey areas, the probability of detection for each of the three species was higher for selfie traps than for live trapping. Spatially explicit capture-recapture models showed that selfie traps were superior at estimating density for brown antechinus and sugar gliders, when compared to simulated live trapping data. Hit rates (number of videos per various time intervals) were correlated with abundance. When correlating various hit rate intervals with abundance, the use of 10-min hit rate was best for predicting sugar glider abundance (R2 = 0.94). The abundance of brown antechinus was estimated from selfie traps using a 24-h hit rate as a predictor (R2 = 0.85). For sugar gliders, the selfie trap can replace live trapping as individuals can be identified through their unique facial stripes and natural ear scars, and thus used in capture-recapture analysis. This method may be useful for monitoring the abundance of other small mammal species that can also be individually recognized from photographs.

Funder

The University of Wollongong

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3