Genome-wide characterization and analysis of microsatellite sequences in camelid species
-
Published:2019-11-14
Issue:2
Volume:65
Page:359-373
-
ISSN:2199-2401
-
Container-title:Mammal Research
-
language:en
-
Short-container-title:Mamm Res
Author:
Manee Manee M., Algarni Abdulmalek T., Alharbi Sultan N., Al-Shomrani Badr M., Ibrahim Mohanad A., Binghadir Sarah A., Al-Fageeh Mohamed B.ORCID
Abstract
AbstractMicrosatellites or simple sequence repeats (SSRs) are among the genetic markers most widely utilized in research. This includes applications in numerous fields such as genetic conservation, paternity testing, and molecular breeding. Though ordered draft genome assemblies of camels have been announced, including for the Arabian camel, systemic analysis of camel SSRs is still limited. The identification and development of informative and robust molecular SSR markers are essential for marker assisted breeding programs and paternity testing. Here we searched and compared perfect SSRs with 1–6 bp nucleotide motifs to characterize microsatellites for draft genome sequences of the Camelidae. We analyzed and compared the occurrence, relative abundance, relative density, and guanine-cytosine (GC) content in four taxonomically different camelid species: Camelus dromedarius, C. bactrianus, C. ferus, and Vicugna pacos. A total of 546762, 544494, 547974, and 437815 SSRs were mined, respectively. Mononucleotide SSRs were the most frequent in the four genomes, followed in descending order by di-, tetra-, tri-, penta-, and hexanucleotide SSRs. GC content was highest in dinucleotide SSRs and lowest in mononucleotide SSRs. Our results provide further evidence that SSRs are more abundant in noncoding regions than in coding regions. Similar distributions of microsatellites were found in all four species, which indicates that the pattern of microsatellites is conserved in family Camelidae.
Funder
King Abdulaziz City for Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics
Reference70 articles.
1. Al-Swailem AM, Shehata MM, Abu-Duhier FM, Al-Yamani EJ, Al-Busadah KA, Al-Arawi MS, Al-Khider AY, Al-Muhaimeed AN, Al-Qahtani FH, Manee MM, Al-Shomrani BM, Al-Qhtani SM, Al-Harthi AS, Akdemir KC, Inan MS, Otu HH (2010) Sequencing, analysis, and annotation of expressed sequence tags for Camelus dromedarius. PLoS ONE 5:e10720 2. Alam CM, Singh AK, Sharfuddin C, Ali S (2014) Genome-wide scan for analysis of simple and imperfect microsatellites in diverse carlaviruses. Infect Genet Evol 21:287–294 3. Avvaru AK, Sowpati DT, Mishra RK (2017) PERF: an exhaustive algorithm for ultra-fast and efficient identification of microsatellites from large DNA sequences. Bioinformatics 27:573 4. Backes G, Hatz B, Jahoor A, Fischbeck G (2003) RFLP diversity within and between major groups of barley in Europe. Plant Breed 122:291–299 5. Bactrian Camels Genome Sequencing and Analysis Consortium, Jirimutu, Wang Z, Ding G, Chen G, Sun Y, Sun Z, Zhang H, Wang L, Hasi S, Zhang Y, Li J, Shi Y, Xu Z, He C, Yu S, Li S, Zhang W, Batmunkh M, Ts B, Narenbatu, Unierhu, Bat-Ireedui S, Gao H, Baysgalan B, Li Q, Jia Z, Turigenbayila, Subudenggerile, Narenmanduhu, Wang Z, Wang J, Pan L, Chen Y, Ganerdene Y, Dabxilt, Erdemt, Altansha, Altansukh, Liu T, Cao M, Aruuntsever, Bayart, Hosblig, He F, Zha-ti A, Zheng G, Qiu F, Sun Z, Zhao L, Zhao W, Liu B, Li C, Chen Y, Tang X, Guo C, Liu W, Ming L, Temuulen, Cui A, Li Y, Gao J, Li J, Wurentaodi, Niu S, Sun T, Zhai Z, Zhang M, Chen C, Baldan T, Bayaer T, Li Y, Meng H (2012) Genome sequences of wild and domestic bactrian camels. Nature Commun 3:1202
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|