Effect of pH on water durability of cellulose nanofiber-reinforced starch film

Author:

Haji Abdul Hamid Izzah Durrati,Soni Raghav,Hsu Yu-I.ORCID,Uyama Hiroshi

Abstract

AbstractThe continuous use of single-use petrochemical-based plastics has created a global crisis with a significant buildup of plastic pollution. The use of biomass resources as a replacement source of plastic constituents, namely cellulose and starch, may contribute to alleviating the crisis. In this study, cellulose nanofiber-reinforced starch films were produced and studied for their pH response in terms of their swelling behavior and wet tensile strength in both freshwater and seawater conditions. Mechanically fibrillated cellulose nanofibers (MCNFs) were blended with dialdehyde starch (Di-aldS) and made into MCNF/Di-aldS films. The films were found to swell more and had a lower wet tensile strength at pH of 9. The film’s strength reduced to 1.60 MPa in basic conditions, 80% less than in acidic environment. This is related to hemiacetal crosslinking, resulted from the interactions between the modified moieties of the starches and cellulose nanofibers. Such bioplastics enhance the reusability of cellulose nanofibers and have the potential to replace conventional petrochemical plastics to create a carbon–neutral circular society. Graphical abstract

Funder

Japan Society for the Promotion of Science

New Energy and Industrial Technology Development Organization

Japan Science and Technology Agency

Osaka University

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,Waste Management and Disposal

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3