1. Földiák, P.: Learning invariance from transformation sequences. Neural Computation 3 (1991) 194–200
2. Stone, J.V.: Learning perceptually salient visual parameters using spatiotemporal smoothness constraints. Neural Computation 8 (1996) 1463–1492
3. Kayser, C., Einhäuser, W., Dümmer, O., König, P., Körding, K.: Extracting slow subspaces from natura1 Videos leads to complex cells. In: Artificial Neural Networks-ICANN 2001 Proceedings, Springer (2001) 1075–1080
4. Wiskott, L., Sejnowski, T.: Slow feature analysis: Unsupervised learning of invariarnces. Neural Computation 14 (2002) 715–770
5. Wiskott, L.: Learning invariance manifolds. In: Proc. Computational Neuro-science Meeting, CNS’98, Santa Barbara. (1999) Special issue of Neurocomputing, 26/27:925–932.