1. M. Anthony and P. Bartlett. Neural Network Learning: theoretical foundations. Cambridge University Press, Cambridge, England, 1992.
2. M. Anthony and N. Biggs. Computational Learning Theory. Cambridge University Press, Cambridge, England, 1992.
3. Gyora M. Benedek and Alon Itai. Learnability with respect to fixed distributions. Theoretical Computer Science, 86:377–389, 1991.
4. Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learnability and the Vapnik-Chervonenkis Dimension. Journal of the ACM, 36(4):929–965, October 1989.
5. Vladimir S. Cherkassky and Filip M. Mulier. Learning from Data. Concepts, Theory, and Methods. John Wiley and Sons, Inc., New York, 1998.