TAK1 Reduces Surgery-induced Overactivation of RIPK1 to Relieve Neuroinflammation and Cognitive Dysfunction in Aged Rats

Author:

Zhang Yuhan,Su Yang,Wang Ziheng,Li Teng,Wang Liwei,Ma Daqing,Zhou Meiyan

Abstract

AbstractBackground: Postoperative cognitive dysfunction (POCD) is a common clinical complication in elderly patients, but its underlying mechanism remains unclear. Receptor-interacting protein kinase 1 (RIPK1), a key molecule mediating necroptosis and regulated by transforming growth factor β-activated kinase 1 (TAK1), was reported to be associated with cognitive impairment in several neurodegenerative diseases. This study was conducted to investigate the possible role of TAK1/RIPK1 signalling in POCD development following surgery in rats. Methods: Young (2-month-old) and old (24-month-old) Sprague–Dawley rats were subjected to splenectomy under isoflurane anaesthesia. The young rats were treated with the TAK1 inhibitor takinib or the RIPK1 inhibitor necrostatin-1 (Nec-1) before surgery, and old rats received adeno-associated virus (AAV)-TAK1 before surgery. The open field test and contextual fear conditioning test were conducted on postoperative day 3. The changes in TNF-α, pro-IL-1β, AP-1, NF-κB p65, pRIPK1, pTAK1 and TAK1 expression and astrocyte and microglia activation in the hippocampus were assessed. Results: Old rats had low TAK1 expression and were more susceptible to surgery-induced POCD and neuroinflammation than young rats. TAK1 inhibition exacerbated surgery-induced pRIPK1 expression, neuroinflammation and cognitive dysfunction in young rats, and this effect was reversed by a RIPK1 inhibitor. Conversely, genetic TAK1 overexpression attenuated surgery-induced pRIPK1 expression, neuroinflammation and cognitive dysfunction in old rats. Conclusion: Ageing-related decreases in TAK1 expression may contribute to surgery-induced RIPK1 overactivation, resulting in neuroinflammation and cognitive impairment in old rats.

Funder

National Natural Science Foundation of China

Science and Technology Project of Xuzhou Commission of Health

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,General Medicine,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3