Streams, sewage, and shallow groundwater: stream-aquifer interactions in the Kathmandu Valley, Nepal

Author:

Prajapati RajaramORCID,Overkamp Nick N.,Moesker Niek,Happee Kate,van Bentem Rick,Danegulu Anusha,Manandhar Bikesh,Devkota Nischal,Thapa Amber Bahadur,Upadhyay Surabhi,Talchabhadel Rocky,Thapa Bhesh Raj,Malla Rabin,Pandey Vishnu Prasad,Davids Jeffrey C.

Abstract

AbstractThe Kathmandu Valley in Nepal is facing a water quantity and quality crisis due to rapid urbanization and haphazard water and wastewater planning and management. Annually, groundwater extractions in the Kathmandu Valley exceed capture, resulting in groundwater table declines. Streams are often important sources of recharge to (or destination of discharges from) aquifers. However, stream-aquifer interactions in the Kathmandu Valley are poorly understood. To improve this understanding, we performed topographic surveys of water levels, and measured water quality, in streams and adjacent hand-dug wells (shallow aquifer). In pre-monsoon, 12% (2018) and 44% (2019) of wells had water levels higher than adjacent streams, indicating mostly a loss of stream water to the aquifer. However, in post-monsoon, 69% (2018) and 70% (2019) of wells had water levels higher than adjacent streams, indicating that monsoon rainfall contributes to shallow aquifer recharge which, at least temporarily, causes streams to transition from losing to gaining. Concentrations of all water quality parameters (electrical conductivity, ammonia, alkalinity, and hardness) were higher in the pre-monsoon compared to post-monsoon in both streams and wells. There was no recurring trend in water level difference longitudinally from upstream to downstream. However, water quality in streams and wells depleted from upstream to downstream. While we clearly observed seasonal refilling of the shallow aquifer, the role of the deep aquifer in seasonal storage processes deserve future research attention.

Funder

Swedish International Development Agency

Center of Research for Environment, Energy and Water (CREEW), Kathmandu, Nepal

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling of water table profile variations owing to stream–aquifer interaction;Water Science & Technology;2023-10-19

2. Impact of alternative water sources on soil and environment;Sustainable Water Resources Management;2023-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3