Selection of the best machine learning method for estimation of concentration of different water quality parameters
Author:
Publisher
Springer Science and Business Media LLC
Subject
Water Science and Technology,Renewable Energy, Sustainability and the Environment
Link
https://link.springer.com/content/pdf/10.1007/s40899-022-00765-3.pdf
Reference47 articles.
1. Abba SI, Hadi SJ, Abdullahi J (2017) River water modelling prediction using multi-linear regression, artificial neural network, and adaptive neuro-fuzzy inference system techniques. Procedia Comput Sci 120:75–82. https://doi.org/10.1016/j.procs.2017.11.212
2. Aghel B, Rezaei A, Mohadesi M (2019) Modeling and prediction of water quality parameters using a hybrid particle swarm optimization–neural fuzzy approach. Int J Environ Sci Te 16(8):4823–4832. https://doi.org/10.1007/s13762-018-1896-3
3. Asadollah SBHS, Sharafati A, Motta D, Yaseen ZM (2021) River water quality index prediction and uncertainty analysis: a comparative study of machine learning models. J Environ Chem Eng 9(1):104599. https://doi.org/10.1016/j.jece.2020.104599
4. Asadollahfardi G, Taklify A, Ghanbari A (2012) Application of artificial neural network to predict TDS in Talkheh Rud River. J Irrig Drain Eng. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000402
5. Asadollahfardi G, Meshkat-Dini A, Homayoun AS, Roohani N (2016) Application of artificial neural networks to predict total dissolved solids in the river Zayanderud. Iran Environ Eng Res 21(4):333–340. https://doi.org/10.4491/eer.2015.096
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The eutrophication-related index of drinking water sources based on the oxidation-reduction potential;BioResources;2024-06-05
2. Support vector machine (SVM) model development for prediction of fecal coliform of Upper Green River Watershed, Kentucky, USA;Sustainable Water Resources Management;2024-04-15
3. Predicting river water quality: An imposing engagement between machine learning and the QUAL2Kw models (case study: Aji-Chai, river, Iran);Results in Engineering;2024-03
4. Regional flood frequency analysis using data-driven models (M5, random forest, and ANFIS) and a multivariate regression method in ungauged catchments;Applied Water Science;2023-05-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3