Abstract
AbstractWe consider a game in which the action set of each player is uncountable, and show that, from weak assumptions on the common prior, any mixed strategy has an approximately equivalent pure strategy. The assumption of this result can be further weakened if we consider the purification of a Nash equilibrium. Combined with the existence theorem for a Nash equilibrium, we derive an existence theorem for a pure strategy approximated Nash equilibrium under sufficiently weak assumptions. All of the pure strategies we derive in this paper can take a finite number of possible actions.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC