Recycled materials in railroad substructure: an energy perspective

Author:

Indraratna Buddhima,Qi YujieORCID,Malisetty Rakesh Sai,Navaratnarajah Sinniah K.,Mehmood Fatima,Tawk Miriam

Abstract

AbstractGiven that the current ballasted tracks in Australia may not be able to support faster and significantly heavier freight trains as planned for the future, the imminent need for innovative and sustainable ballasted tracks for transport infrastructure is crucial. Over the past two decades, a number of studies have been conducted by the researchers of Transport Research Centre (TRC) at the University of Technology Sydney (UTS) to investigate the ability of recycled rubber mats, as well as waste tyre cells and granulated rubber to improve the stability of track substructure including ballast and subballast layers. This paper reviews four applications of these novel methods, including using recycled rubber products such as CWRC mixtures (i.e., mixtures of coal wash (CW) and rubber crumbs (RC)) and SEAL mixtures (i.e., mixtures of steel furnace slag, CW and RC) to replace subballast/capping materials, tyre cells reinforcements for subballast/capping layer and under ballast mats; and investigates the energy dissipation capacity for each application based on small-scale cyclic triaxial tests and large-scale track model tests. It has been found that the inclusion of these rubber products increases the energy dissipation effect of the track, hence reducing the ballast degradation efficiently and increasing the track stability. Moreover, a rheological model is also proposed to investigate the effect of different rubber inclusions on their efficiency to reduce the transient motion of rail track under dynamic loading. The outcomes elucidated in this paper will lead to a better understanding of the performance of ballast tracks upgraded with resilient rubber products, while promoting environmentally sustainable and more affordable ballasted tracks for greater passenger comfort and increased safety.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanical Engineering,Transportation,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3