A substructure approach for analyzing pile foundation and soil vibrations due to train running over viaduct and its validation

Author:

Wu Ying,Bian Xuecheng,Cheng Chong,Jiang Jianqun

Abstract

AbstractAn efficient computational approach based on substructure methodology is proposed to analyze the viaduct–pile foundation–soil dynamic interaction under train loads. The train–viaduct subsystem is solved using the dynamic stiffness integration method, and its accuracy is verified by the existing analytical solution for a moving vehicle on a simply supported beam. For the pile foundation–soil subsystem, the geometric and material properties of piles and soils are assumed to be invariable along the azimuth direction. By introducing the equivalent stiffness of grouped piles, the governing equations of pile foundation–soil interaction are simplified based on Fourier decomposition method, so the three-dimensional problem is decomposed into several two-dimensional axisymmetric finite element models. The pile foundation–soil interaction model is verified by field measurements due to shaker loading at pile foundation top. In addition, these two substructures are coupled with the displacement compatibility condition at interface of pier bottom and pile foundation top. Finally, the proposed train–viaduct–pile foundation–soil interaction model was validated by field tests. The results show that the proposed model can predict vibrations of pile foundation and soil accurately, thereby providing a basis for the prediction of pile–soil foundation settlement. The frequency spectra of the vibration in Beijing–Tianjin high-speed railway demonstrated that the main frequencies of the pier top and ground surface are below 100 and 30 Hz, respectively.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanical Engineering,Transportation,Computational Mechanics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3