Numerical analysis of high-speed railway slab tracks using calibrated and validated 3D time-domain modelling

Author:

Esen A. F.ORCID,Laghrouche O.,Woodward P. K.,Medina-Pineda D.,Corbisez Q.,Shih J. Y.,Connolly D. P.

Abstract

AbstractConcrete slabs are widely used in modern railways to increase the inherent resilient quality of the tracks, provide safe and smooth rides, and reduce the maintenance frequency. In this paper, the elastic performance of a novel slab trackform for high-speed railways is investigated using three-dimensional finite element modelling in Abaqus. It is then compared to the performance of a ballasted track. First, slab and ballasted track models are developed to replicate the full-scale testing of track sections. Once the models are calibrated with the experimental results, the novel slab model is developed and compared against the calibrated slab track results. The slab and ballasted track models are then extended to create linear dynamic models, considering the track geodynamics, and simulating train passages at various speeds, for which the Ledsgård documented case was used to validate the models. Trains travelling at low and high speeds are analysed to investigate the track deflections and the wave propagation in the soil, considering the issues associated with critical speeds. Various train loading methods are discussed, and the most practical approach is retained and described. Moreover, correlations are made between the geotechnical parameters of modern high-speed rail and conventional standards. It is found that considering the same ground condition, the slab track deflections are considerably smaller than those of the ballasted track at high speeds, while they show similar behaviour at low speeds.

Funder

Alstom Group

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanical Engineering,Transportation,Computational Mechanics

Reference68 articles.

1. El Kacimi A, Woodward PK, Laghrouche O, Medero G (2013) Time domain 3D finite element modelling of train-induced vibration at high speed. Comput Struct 118:66–73

2. Esveld C (2001) Modern railway track. MRT-productions, Zaltbommel

3. Darr E (2000) Ballastless track: design, types, track stability, maintenance and system comparison. Railw Tech Rev 3:36–45

4. Lichtberger B (2005) Track compendium. Eurailpress, Hamburg, pp 1–192

5. Bastin R (2006) Development of German non-ballasted track forms. Proc Inst Civ Eng Transp 159(1):25–39

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3