Abstract
AbstractThe meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads (USPs) was studied. The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scanning techniques, and the 3D dynamic model of the rail–sleeper–ballast bed was constructed using the coupled discrete element method–multi-flexible-body dynamics (DEM–MFBD) approach. We analyse the meso-mechanical dynamics of the ballast bed with USPs under dynamic load on a train and verify the correctness of the model in laboratory tests. It is shown that the deformation of the USPs increases the contact area between the sleeper and the ballast particles, and subsequently the number of contacts between them. As the depth of the granular ballast bed increases, the contact area becomes larger, and the contact force between the ballast particles gradually decreases. Under the action of the elastic USPs, the contact forces between ballast particles are reduced and the overall vibration level of the ballast bed can be reduced. The settlement of the granular ballast bed occurs mainly at the shallow position of the sleeper bottom, and the installation of the elastic USPs can be effective in reducing the stress on the ballast particles and the settlement of the ballast bed.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Computer Science Applications,Mechanical Engineering,Transportation,Computational Mechanics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献