Energy management strategy based on dynamic programming with durability extension for fuel cell hybrid tramway

Author:

Tao Shiyong,Chen Weirong,Gan Rui,Li Luoyi,Zhang Guorui,Han Ying,Li Qi

Abstract

AbstractThis paper proposes an energy management strategy for a fuel cell (FC) hybrid power system based on dynamic programming and state machine strategy, which takes into account the durability of the FC and the hydrogen consumption of the system. The strategy first uses the principle of dynamic programming to solve the optimal power distribution between the FC and supercapacitor (SC), and then uses the optimization results of dynamic programming to update the threshold values in each state of the finite state machine to realize real-time management of the output power of the FC and SC. An FC/SC hybrid tramway simulation platform is established based on RT-LAB real-time simulator. The compared results verify that the proposed EMS can improve the durability of the FC, increase its working time in the high-efficiency range, effectively reduce the hydrogen consumption, and keep the state of charge in an ideal range.

Funder

National Natural Science Foundation of China

Fok Ying Tong Education Foundation

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanical Engineering,Transportation,Computational Mechanics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3