The effect of controllable train-tail devices on the longitudinal impulse of the combined trains under initial braking

Author:

Zhang Yuan,Wei WeiORCID,Liu Boyang,Zhang Jun,Zhu Jichao

Abstract

AbstractThe 20,000-ton combined train running has greatly promoted China’s heavy-haul railway transportation capability. The application of controllable train-tail devices could improve the braking wave of the train and braking synchronism, and alleviate longitudinal impulse. However, the characteristics of the controllable train-tail device such as exhaust area, exhaust duration and exhaust action time are not uniform in practice, and their effects on the longitudinal impulse of the train are not apparent, which is worth studying. In this work, according to the formation of the Datong–Qinhuangdao Railway, the train air brake and longitudinal dynamics simulation system (TABLDSS) is applied to establish a 20,000-ton combined train model with the controllable train-tail device, and the braking characteristics and the longitudinal impulse of the train are calculated synchronously with changing the air exhaust time, exhaust area, and action lag time under initial braking. The results show that the maximum coupler force of the combined train will decrease with the extension of the continuous exhaust time, while the total exhaust time of the controllable train-tail device remains unchanged; the maximum coupler force of the combined train reduces by 32.5% with the exhaust area increasing from 70% to 140%; when the lag time between the controllable train-tail device and the master locomotive is more than 1.5 s, the maximum coupler force of the train increases along with the time difference enlargement.

Funder

China National Railway Group Co., Ltd

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanical Engineering,Transportation,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3