Traction power substation balance and losses estimation in AC railways using a power transfer device through Monte Carlo analysis

Author:

Morais Vítor A.ORCID,Martins António P.

Abstract

AbstractThe high dynamic power requirements present in modern railway transportation systems raise research challenges for an optimal operation of railway electrification. This paper presents a Monte Carlo analysis on the application of a power transfer device installed in the neutral zone and exchanging active power between two sections. The main analyzed parameters are the active power balance in the two neighbor traction power substations and the system power losses. A simulation framework is presented to comprise the desired analysis and a universe of randomly distributed scenarios are tested to evaluate the effectiveness of the power transfer device system. The results show that the density of trains and the relative branch length of a traction power substation should be considered in the evaluation phase of the best place to install a power transfer device, towards the reduction of the operational power losses, while maintaining the two substations balanced in terms of active power.

Funder

fundação para a ciência e a tecnologia

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanical Engineering,Transportation,Computational Mechanics

Reference51 articles.

1. International Energy Agency (IEA) and International Union of Railways (2017) Energy consumption and CO2 emissions focus on passenger rail services.

2. Pilo E, Mazumder S, Franco I (2014) Railway electrical smart grids: an introduction to next-generation railway power systems and their operation. IEEE Electr Mag 2(3):49–55

3. Morais VA, Afonso JL, Carvalho AS, Martins AP (2020) New reactive power compensation strategies for railway infrastructure capacity increasing. Energies 13(17):4379

4. Shift2Rail Joint Undertaking (2019) Multi-Anual action plan. (amended version: 2019). Tech. rep., Luxembourg

5. Tumilowicz A, Sugarman M (2020) IN2STEMPO: How smart maintenance could help support the decarbonisation of our rail network. Global Railway Review 2020(5). https://www.globalrailwayreview.com/article/111634/global-railway-review-issue-5-2020/

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3