Genome-Wide Identification and Expression Analysis of the STAT Family in Reeve’s Turtle (Mauremys reevesii)

Author:

Song Yi,Zhou Zeshuo,Huang Shichen,Li Zhiyuan,Zhu Xuechi,Zhou Hongming,Jiang Yuxin,Dissanayake Duminda S. B.,Georges Arthur,Xiong Lei

Abstract

AbstractThe Stat (signal transducer and activator of transcription) gene family plays a vital role in regulating immunity and the processes of cellular proliferation, differentiation, and apoptosis across diverse organisms. Although the functions of Stat genes in immunity have been extensively documented in many mammals, limited data are available for reptiles. We used phylogenetic analysis to identify eight putative members of the Stat family (Stat1-1, Stat1-2, Stat2, Stat3, Stat4, Stat5b, Stat6-1, and Stat6-2) within the genome of M.reevesii, a freshwater turtle found in East Asia. Sequence analysis showed that the Stat genes contain four conserved structural domains protein interaction domain, coiled-coil domain, DNA-binding domain, and Src homology domain 2. In addition, Stat1, Stat2, and Stat6 contain TAZ2bind, Apolipo_F, and TALPID3 structural domains. The mRNA levels of Stat genes were upregulated in spleen tissues at 4, 8, 12, and 16 h after administration of lipopolysaccharide, a potent activator of the immune system. Stat5b expression at 12-h LPS post-injection exhibited the most substantial difference from the control. The expression of Stat5b in spleen tissue cellular was verified by immunofluorescence. These results suggest that Stat5b plays a role in the immune response of M.reevesii and may prove to be as a positive marker of an immune response in future studies.

Funder

the 2022 Anhui Province College Student Innovation and Entrepreneurship Training Program

the 2022 National College Student Innovation and Entrepreneurship Training Program

Municipal Public Welfare Research Project from Jiaxing, Zhejiang Province

the Research Start-up Fund Project of Jiaxing University for Introducing Talents

National Natural Science Foundation of China

the University excellent top-notch talent cultivation program

the University-level youth talent cultivation program

the PhD Initiation Project

University of Canberra

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3