LncRNA HCP5 Facilitates the Progression of Ovarian Cancer by Interacting with the PTBP1 Protein

Author:

Shou Jian,Zhang Chuanling,Zheng Xiaoyu,Li Yaowei,Wu Peng,Chen Long,Wei XiuJun

Abstract

AbstractOvarian cancer (OC) is a major gynecological malignancy with an annually increasing morbidity that poses a significant threat to the health of women worldwide. Most OC patients are diagnosed at an advanced stage. It is an urgent task to search for biomarkers for the diagnosis and treatment of OC. The lncRNA HCP5 (HCP5) was recently identified as an oncogene in several malignant tumors. However, the function of HCP5 in OC has rarely been reported. Herein, the levels of HCP5 and PTBP1 were found to be markedly increased in malignant OC tumor tissues and OC cell lines. In HCP5-silenced SKOV-3 and HEY cells, cell viability was markedly decreased, and the apoptosis rate was significantly increased, with more cells exhibiting G0/G1 arrest and increased expression of cleaved caspase-3 and cleaved caspase-9. Furthermore, the number of migrated cells, number of invaded cells, and migration distance were notably decreased by the knockdown of HCP5 in SKOV-3 cells and HEY cells. In the xenograft model established with SKOV-3 cells, the number of lung metastases, tumor growth, and Ki67 expression in tumor tissues were markedly decreased by the knockdown of HCP5, accompanied by an increased percentage of TUNEL-positive cells. HCP5 was found to be localized in the nucleus, and the interaction between HCP5 and PTBP1 was verified by RNA pull-down and RNA immunoprecipitation assays. Furthermore, in HCP5-overexpressing OC cells, the impacts of HCP5 on cell proliferation and apoptosis were significantly attenuated by the knockdown of PTBP1. Collectively, these results indicate that HCP5 facilitates the progression of OC by interacting with the PTBP1 protein.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Molecular Biology,General Medicine,Ecology, Evolution, Behavior and Systematics,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3