ZAP70: A Key Gene Identified by Differential Expression Analysis for Early Diagnosis of Fetuses with Emanuel Syndrome

Author:

Hu Jing,Wang Mengyue,Xiang Ruiyao

Abstract

AbstractEmanuel syndrome is a rare autosomal disorder characterized by microcephaly, heart defects, cleft palate and developmental delay. However, there is a lack of specific prenatal screening for Emanuel syndrome. To screen for early diagnostic marker genes in fetuses with karyotype+der[22]t(11;22)(q23;q11) of Emanuel syndrome. Transcriptome sequencing and clinical trait data of t(11;22)(q23;q11) translocation samples were screened from the GEO database. The differentially expressed genes (DEGs) were screened by principal component analysis of gene expression by R package, and intersections were taken with balanced and unbalanced DEGs. Then, the correlation with clinical traits was determined by WGCNA analysis, GO and KEGG enrichment analysis, and then univariate Cox analysis and Lasso analysis were performed to obtain the key genes. The core regulatory genes were obtained after protein–protein interaction (PPI) network analysis. A total of 50 DEGs were obtained after differential analysis. WGCNA analysis showed that DEG was associated with the chromosomal imbalance and age module. GO and KEGG enrichment analyses showed candidate genes were associated with exocytic vesicle membrane, synaptic vesicle membranes, glycoprotein complex, dystrophin-associated glycoprotein complex and malaria. COX and Lasso analyses yielded 5 hub genes, including ZBED9, RGS20, SGCB, ETV5, and ZAP70. The results of PPI identified the key regulatory gene associated with chromosomal imbalance as the ZAP70 gene. ZAP70 may be a key gene for early diagnosis of Emanuel syndrome in fetuses with+der[22]t(11;22)(q23;q11) karyotype.

Funder

Yunnan Provincial Science and Technology Department-Kunming Medical University Joint Special Top-level Project on Applied Basic Research

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3