Author:
Hassan Rasha Mohamed,Yehia Heba,El-Behairy Mohammed F.,El-Azzouny Aida Abdel-Sattar,Aboul-Enein Mohamed Nabil
Abstract
AbstractNew quinazolin-4-ones 9–32 were synthesized in an attempt to overcome the life-threatening antibiotic resistance phenomenon. The antimicrobial screening revealed that compounds 9, 15, 16, 18, 19, 20 and 29 are the most broad spectrum antimicrobial agents in this study with safe profile on human cell lines. Additionally, compounds 19 and 20 inhibited biofilm formation in Pseudomonas aeruginosa, which is regulated by quorum sensing system, at sub-minimum inhibitory concentrations (sub-MICs) with IC50 values 3.55 and 6.86 µM, respectively. By assessing other pseudomonal virulence factors suppression, it was found that compound 20 decreased cell surface hydrophobicity compromising bacterial cells adhesion, while both compounds 19 and 20 curtailed the exopolysaccharide production which constitutes the major component of the matrix binding biofilm components together. Also, at sub-MICs Pseudomonas cells twitching motility was impeded by compounds 19 and 20, a trait which augments the cells pathogenicity and invasion potential. Molecular docking study was performed to further evaluate the binding mode of candidates 19 and 20 as inhibitors of P. aeruginosa quorum sensing transcriptional regulator PqsR. The achieved results demonstrate that both compounds bear promising potential for discovering new anti-biofilm and quorum quenching agents against Pseudomonas aeruginosa without triggering resistance mechanisms as the normal bacterial life cycle is not disturbed.
Graphical abstract
New 4-quinazolinones were synthesized and screened for their antimicrobial activity. Compounds 19 and 20 inhibited biofilm formation in Pseudomonas aeruginosa at sub- minimum inhibitory concentrations. Also, they decreased other virulence factors at low concentrations without affecting bacterial growth bacteria indicating their promising profile as anti-virulence agents that cause less bacterial resistance than the conventional antibiotics.
Funder
National Research Centre Egypt
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献