Publisher
Springer Science and Business Media LLC
Subject
Engineering (miscellaneous)
Reference19 articles.
1. Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans Knowl Data Eng 17(6):734–749. https://doi.org/10.1109/TKDE.2005.99
2. Ahuja R, Solanki A, Nayyar A (2019) Movie recommender system using k-means clustering and k-nearest neighbor. In: 2019 9th international conference on cloud computing, data science & engineering (confluence), IEEE, pp 263–268. https://doi.org/10.1109/CONFLUENCE.2019.8776969
3. Al Mamunur Rashid SKL, Karypis G, Riedl J (2006) Clustknn: a highly scalable hybrid model- & memory-based cf algorithm. In: Proceeding of webKDD
4. Ayub M, Ghazanfar MA, Mehmood Z, Saba T, Alharbey R, Munshi AM, Alrige MA (2019) Modeling user rating preference behavior to improve the performance of the collaborative filtering based recommender systems. PLoS ONE 14(8):e0220129. https://doi.org/10.1371/journal.pone.0220129
5. Bahadorpour M, Neysiani BS, Shahraki MN (2017) Determining optimal number of neighbors in item-based knn collaborative filtering algorithm for learning preferences of new users. J Telecommun Electron Comput Eng (JTEC) 9(3):163–167
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献