Author:
Valsecchi Nicola,Roda Matilde,Febbraro Simone,Trolli Eleonora,Palandri Giorgio,Giannini Giulia,Milletti David,Schiavi Costantino,Fontana Luigi
Abstract
Abstract
Purpose
Idiopathic normal pressure hydrocephalus (iNPH) is associated with an increased prevalence of open-angle glaucoma, attributed to variations of the pressure gradient between intraocular and intracranial compartments at the level of the lamina cribrosa (LC). As ocular biomechanics influence the behavior of the LC, and a lower corneal hysteresis (CH) has been associated to a higher risk of glaucomatous optic nerve damage, in this study we compared ocular biomechanics of iNPH patients with healthy subjects.
Methods
Twenty-four eyes of 24 non-shunted iNPH patients were prospectively recruited. Ocular biomechanical properties were investigated using the ocular response analyzer (Reichert Instruments) for the calculation of the CH, corneal resistance factor (CRF), Goldmann-correlated intraocular pressure (IOPg), and corneal-compensated intraocular pressure (IOPcc). Results were compared with those of 25 eyes of 25 healthy subjects.
Results
In iNPH eyes, the median CH value and interquartile range (IQR) were 9.7 mmHg (7.8–10) and 10.6 mmHg (9.3–11.3) in healthy controls (p = 0.015). No significant differences were found in IOPcc [18.1 mmHg (14.72–19.92) vs. 16.4 mmHg (13.05–19.6)], IOPg [15.4 mmHg (12.82–19.7) vs. 15.3 mmHg (12.55–17.35)], and CRF [9.65 mmHg (8.07–11.65) vs. 10.3 mmHg (9.3–11.5)] between iNPH patients and controls.
Conclusions
In iNPH patients, the CH was significantly lower compared to healthy subjects. This result suggests that ocular biomechanical properties may potentially contribute to the risk of development of glaucomatous optic nerve damage in iNPH patients.
Funder
Alma Mater Studiorum - Università di Bologna
Publisher
Springer Science and Business Media LLC
Reference35 articles.
1. Adams RD, Fisher CM, Hakim S, Ojemann RG, Sweet WH (1965) Symptomatic occult hydrocephalus with normal cerebrospinal-fluid pressure. N Engl J Med 273(3):117–126
2. Wang Z, Zhang Y, Hu F, Ding J, Wang X (2020) Pathogenesis and pathophysiology of idiopathic normal pressure hydrocephalus. CNS Neurosci Ther 26(12):1230–1240
3. Bonney PA, Briggs RG, Wu K, Choi W, Khahera A, Ojogho B et al (2022) Pathophysiological mechanisms underlying idiopathic normal pressure hydrocephalus: a review of recent insights. Front Aging Neurosci 28(14):866313
4. Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM (2005) Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 57(3):S2-4
5. Williams MA, Relkin NR (2013) Diagnosis and management of idiopathic normal-pressure hydrocephalus. Neurol Clin Pract 3(5):375–385