Author:
Fu Miao,Chen Yuanyuan,Yang Anhuai
Abstract
Abstract
Purpose
Ochratoxin A (OTA) contamination of food and feed is a serious problem worldwide. OTA is considered a carcinogen and immunotoxic, nephrotoxic, and neurotoxic mycotoxin. The present study aims to determine the toxic effects of OTA on retinal ganglion cells (RGCs) and assess the resulting impairment of retinal function in mice.
Methods
RGC-5 cells were exposed to OTA (100 and 200 μg/L) for 3 days, and the mice were fed OTA-contain (100 and 200 μg/kg) diets for 4 weeks. Antioxidant indices were detected by spectrophotometer. The apoptosis of RGC-5 cells was determined by flow cytometry. Mitochondrial morphology and mitochondrial membrane potential were detected by immunofluorescence. RGC survival was determined by immunofluorescence staining with Brn3a. Flash electroretinography (ERG) was conducted to assess visual function.
Results
The oxidative-antioxidant balance suggested that OTA-induced severe oxidative stress, including increased reactive oxygen species (ROS) and malondialdehyde (MDA) levels in the OTA-exposed RGC-5 cells, and the reduced activity of superoxide dismutase (SOD) and glutathione-S-transferase (GST) in the OTA exposed group. Furthermore, OTA exposure led to remarkable apoptosis in RGC-5 cells. The mitochondrial detection showed that OTA caused significant mitochondrial membrane potential reduction and mitochondrial fragmentation, which may be the cause of apoptosis of RGC-5 cells. Additionally, in vivo experiments demonstrated that OTA resulted in significant death of RGCs and subsequent retinal dysfunction in mice.
Conclusion
Ochratoxin A induces mitochondrial dysfunction, oxidative stress, and RGCs death in mice.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献