Big data in contemporary electron microscopy: challenges and opportunities in data transfer, compute and management
-
Published:2023-04-13
Issue:3
Volume:160
Page:169-192
-
ISSN:0948-6143
-
Container-title:Histochemistry and Cell Biology
-
language:en
-
Short-container-title:Histochem Cell Biol
Author:
Poger DavidORCID, Yen LisaORCID, Braet FilipORCID
Abstract
AbstractThe second decade of the twenty-first century witnessed a new challenge in the handling of microscopy data. Big data, data deluge, large data, data compliance, data analytics, data integrity, data interoperability, data retention and data lifecycle are terms that have introduced themselves to the electron microscopy sciences. This is largely attributed to the booming development of new microscopy hardware tools. As a result, large digital image files with an average size of one terabyte within one single acquisition session is not uncommon nowadays, especially in the field of cryogenic electron microscopy. This brings along numerous challenges in data transfer, compute and management. In this review, we will discuss in detail the current state of international knowledge on big data in contemporary electron microscopy and how big data can be transferred, computed and managed efficiently and sustainably. Workflows, solutions, approaches and suggestions will be provided, with the example of the latest experiences in Australia. Finally, important principles such as data integrity, data lifetime and the FAIR and CARE principles will be considered.
Funder
University of Sydney
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Medical Laboratory Technology,Molecular Biology,Histology
Reference153 articles.
1. Alewijnse B, Ashton AW, Chambers MG, Chen S, Cheng A, Ebrahim M, Eng ET, Hagen WJH, Koster AJ, López CS, Lukoyanova N, Ortega J, Renault L, Reyntjens S, Rice WJ, Scapin G, Schrijver R, Siebert A, Stagg SM, Grum-Tokars V, Wright ER, Wu S, Yu Z, Zhou ZH, Carragher B, Potter CS (2017) Best practices for managing large CryoEM facilities. J Struct Biol 199(3):225–236. https://doi.org/10.1016/j.jsb.2017.07.011 2. Allan C, Burel J-M, Moore J, Blackburn C, Linkert M, Loynton S, MacDonald D, Moore WJ, Neves C, Patterson A, Porter M, Tarkowska A, Loranger B, Avondo J, Lagerstedt I, Lianas L, Leo S, Hands K, Hay RT, Patwardhan A, Best C, Kleywegt GJ, Zanetti G, Swedlow JR (2012) OMERO: flexible, model-driven data management for experimental biology. Nat Methods 9(3):245–253. https://doi.org/10.1038/nmeth.1896 3. Allen B, Bresnahan J, Childers L, Foster I, Kandaswamy G, Kettimuthu R, Kordas J, Link M, Martin S, Pickett K, Tuecke S (2012) Software as a service for data scientists. Commun ACM 55(2):81–88. https://doi.org/10.1145/2076450.2076468 4. Ando T, Bhamidimarri SP, Brending N, Colin-York H, Collinson L, De Jonge N, de Pablo PJ, Debroye E, Eggeling C, Franck C, Fritzsche M, Gerritsen H, Giepmans BNG, Grunewald K, Hofkens J, Hoogenboom JP, Janssen KPF, Kaufman R, Klumpermann J, Kurniawan N, Kusch J, Liv N, Parekh V, Peckys DB, Rehfeldt F, Reutens DC, Roeffaers MBJ, Salditt T, Schaap IAT, Schwarz US, Verkade P, Vogel MW, Wagner R, Winterhalter M, Yuan H, Zifarelli G (2018) The 2018 correlative microscopy techniques roadmap. J Phys D Appl Phys 51(44):443001. https://doi.org/10.1088/1361-6463/aad055 5. Androulakis S, Schmidberger J, Bate MA, DeGori R, Beitz A, Keong C, Cameron B, McGowan S, Porter CJ, Harrison A, Hunter J, Martin JL, Kobe B, Dobson RCJ, Parker MW, Whisstock JC, Gray J, Treloar A, Groenewegen D, Dickson N, Buckle AM (2008) Federated repositories of X-ray diffraction images. Acta Crystallogr D 64(7):810–814. https://doi.org/10.1107/S0907444908015540
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|