The late-evolving salmon and trout join the GnRH1 club

Author:

von Schalburg Kristian R.,Gowen Brent E.,Christensen Kris A.,Ignatz Eric H.,Hall Jennifer R.,Rise Matthew L.

Abstract

AbstractAlthough it is known that the whitefish, an ancient salmonid, expresses three distinct gonadotropin-releasing hormone (GnRH) forms in the brain, it has been thought that the later-evolving salmonids (salmon and trout) had only two types of GnRH: GnRH2 and GnRH3. We now provide evidence for the expression of GnRH1 in the gonads of Atlantic salmon by rapid amplification of cDNA ends, real-time quantitative PCR and immunohistochemistry. We examined six different salmonid genomes and found that each assembly has one gene that likely encodes a viable GnRH1 prepropeptide. In contrast to both functional GnRH2 and GnRH3 paralogs, the GnRH1 homeolog can no longer express the hormone. Furthermore, the viable salmonid GnRH1 mRNA is composed of only three exons, rather than the four exons that build the GnRH2 and GnRH3 mRNAs. Transcribed gnrh1 is broadly expressed (in 17/18 tissues examined), with relative abundance highest in the ovaries. Expression of the gnrh2 and gnrh3 mRNAs is more restricted, primarily to the brain, and not in the gonads. The GnRH1 proximal promoter presents composite binding elements that predict interactions with complexes that contain diverse cell fate and differentiation transcription factors. We provide immunological evidence for GnRH1 peptide in the nucleus of 1-year-old type A spermatogonia and cortical alveoli oocytes. GnRH1 peptide was not detected during other germ cell or reproductive stages. GnRH1 activity in the salmonid gonad may occur only during early stages of development and play a key role in a regulatory network that controls mitotic and/or meiotic processes within the germ cell.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Medical Laboratory Technology,Molecular Biology,Histology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In focus in HCB;Histochemistry and Cell Biology;2023-11-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3