Clinical and microbiological features of a cohort of patients with Acinetobacter baumannii bloodstream infections

Author:

Wu Chongyang,Yuan Yu,Tang Sishi,Liu Chen,He Chao

Abstract

Abstract Purpose Acinetobacter baumannii is emerging as a pathogen that is a focus of global concern due to the frequent occurrence of the strains those are extensively resistant to antibiotics. This study was aimed to analyze the clinical and microbiological characteristics of a cohort of patients with A. baumannii bloodstream infections (BSIs) in western China. Methods A retrospective study of the patients at West China Hospital of Sichuan University with A. baumannii BSIs between Jan, 2018 and May, 2023 was conducted. Antimicrobial susceptibility of A. baumannii isolates was tested by microdilution broth method. Whole-genome sequencing and genetic analysis were also performed for these isolates. Results Among the 117 patients included, longer intensive care unit stay, higher mortality, and more frequent invasive procedures and use of more than 3 classes of antibiotics were observed among the carbapenem-resistant A. baumannii (CRAB)-infected group (n = 76), compared to the carbapenem-susceptible A. baumannii (CSAB)-infected group (n = 41, all P ≤ 0.001). Twenty-four sequence types (STs) were determined for the 117 isolates, and 98.7% (75/76) of CRAB were identified as ST2. Compared to non-ST2 isolates, ST2 isolates exhibited higher antibiotic resistance, and carried more resistance and virulence genes (P < 0.05). In addition, 80 (68.4%) isolates were CRISPR-positive, showed higher antibiotic susceptibility, and harbored less resistance and virulence genes, in comparison to CRISPR-negative ones (P < 0.05). Phylogenetic clustering based on coregenome SNPs indicated a sporadic occurrence of clonal transmission. Conclusion Our findings demonstrate a high frequency of ST2 among A. baumannii causing BSIs, and high antibiotic susceptibility of non-ST2 and CRISPR-positive isolates. It is necessary to strengthen the surveillance of this pathogen.

Funder

National Natural Science Foundation of China

funding of Science and Technology Department of Sichuan Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3