Derivation and validation of a predictive mortality model of in-hospital patients with Acinetobacter baumannii nosocomial infection or colonization

Author:

Gagliardo Carola Maria,Noto Davide,Giammanco Antonina,Catanzaro Andrea,Cimino Maria Concetta,Presti Rosalia Lo,Tuttolomondo Antonino,Averna Maurizio,Cefalù Angelo Baldassare

Abstract

Abstract Purpose Acinetobacter baumannii (Ab) is a Gram-negative opportunistic bacterium responsible for nosocomial infections or colonizations. It is considered one of the most alarming pathogens due to its multi-drug resistance and due to its mortality rate, ranging from 34 to 44,5% of hospitalized patients. The aim of the work is to create a predictive mortality model for hospitalized patient with Ab infection or colonization. Methods A cohort of 140 sequentially hospitalized patients were randomized into a training cohort (TC) (100 patients) and a validation cohort (VC) (40 patients). Statistical bivariate analysis was performed to identify variables discriminating surviving patients from deceased ones in the TC, considering both admission time (T0) and infection detection time (T1) parameters. A custom logistic regression model was created and compared with models obtained from the “status” variable alone (Ab colonization/infection), SAPS II, and APACHE II scores. ROC curves were built to identify the best cut-off for each model. Results Ab infection status, use of penicillin within 90 days prior to ward admission, acidosis, Glasgow Coma Scale, blood pressure, hemoglobin and use of NIV entered the logistic regression model. Our model was confirmed to have a better sensitivity (63%), specificity (85%) and accuracy (80%) than the other models. Conclusion Our predictive mortality model demonstrated to be a reliable and feasible model to predict mortality in Ab infected/colonized hospitalized patients.

Funder

Università degli Studi di Palermo

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3