A novel model based on a transformer for intent detection and slot filling

Author:

Li Dapeng,Wang ShuliangORCID,Zhao Boxiang,Ma Zhiqiang,Li Leixiao

Abstract

AbstractBuilding task-oriented dialogue systems has become a topic of interest in the research community and industry. The task-oriented dialogue system is a closed-domain dialogue system that can perform specific tasks for users. The natural language understanding module of a task-oriented dialogue system is crucial because it is related to a task-oriented dialogue system that provides correctional services for users. The natural language understanding module of a task-oriented dialogue system performs two tasks: intent detection and slot filling. The intent detection task can be regarded as a text classification task; a classification model is trained to predict the intention of the user from the user’s input information. The slot filling task can be regarded as a sequence analysis task; a sequence analysis model is trained to predict the details of the user’s intention. In this paper, we proposed a novel model based on a transformer encoder for intent detection and slot filling. It follows the encoder-decoder structure, including a vanilla Transformer encoder, a bidirectional LSTM encoder, a linear classification decoder for intent detection, and a conditional random field decoder for slot filling. The experimental results on two public datasets show that our proposed model outperforms the existing methods based on the Transformer and can be combined with BERT to achieve better intent detection and slot filling results.

Publisher

Springer Science and Business Media LLC

Reference44 articles.

1. Ba, J., Kiros, J., & Hinton, G. (2016). Layer Normalization. Arxiv Preprint arXiv, 1607, 06450.

2. Chen, Q., Zhuo, Z., Wang, W. (2019). BERT for joint intent classification and slot filling. arXiv preprint arXiv: 1902.10909

3. Coucke, A., Saade, A., Ball, A., Bluche, T., Caulier, A., Leroy, D., Doumouro, C., Gisselbrecht, T., Caltagirone, F., Lavril, T., Primet, M., Dureau, J. (2018). Snips voice platform: an embedded spoken language understanding system for private-by-design voice interfaces. arXiv preprint arXiv: 1805.10190.

4. Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv, 1, 4171–4186.

5. E, H., Niu, P., Chen, Z., Song, M.: A novel bi-directional interrelated model for joint intent detection and slot filling. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 5467–5471. ACL, Florence, Italy (2019).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3