Understanding pedestrian movement using urban sensing technologies: the promise of audio-based sensors

Author:

Han Chaeyeon,Seshadri Pavan,Ding Yiwei,Posner Noah,Koo Bon Woo,Agrawal Animesh,Lerch Alexander,Guhathakurta SubhrajitORCID

Abstract

AbstractWhile various sensors have been deployed to monitor vehicular flows, sensing pedestrian movement is still nascent. Yet walking is a significant mode of travel in many cities, especially those in Europe, Africa, and Asia. Understanding pedestrian volumes and flows is essential for designing safer and more attractive pedestrian infrastructure and for controlling periodic overcrowding. This study discusses a new approach to scale up urban sensing of people with the help of novel audio-based technology. It assesses the benefits and limitations of microphone-based sensors as compared to other forms of pedestrian sensing. A large-scale dataset called ASPED is presented, which includes high-quality audio recordings along with video recordings used for labeling the pedestrian count data. The baseline analyses highlight the promise of using audio sensors for pedestrian tracking, although algorithmic and technological improvements to make the sensors practically usable continue. This study also demonstrates how the data can be leveraged to predict pedestrian trajectories. Finally, it discusses the use cases and scenarios where audio-based pedestrian sensing can support better urban and transportation planning.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3