High-resolution spatiotemporal inference of urban road traffic emissions using taxi GPS and multi-source urban features data: a case study in Chengdu, China

Author:

Li Jiaxing,Jiang Chaozhe,Han Ke,Yu QingORCID,Zhang Haoran

Abstract

AbstractThe spatial heterogeneity and temporal variability of traffic in urban environments make traffic emissions inference challenging. To address this challenge, this study introduces a novel geographical context-based approach utilizing high-resolution taxi GPS data, incorporating multidimensional contextual factors such as road data, points of interest (POI), weather data, and population density. The proposed method can enhance the precision of traffic emissions inference compared to conventional macroscopic estimation techniques. To overcome the issue of missing data in traffic emissions inference from taxi data, three ensemble machine learning algorithms—Random Forest, Gradient Boosting Decision Trees (GBDT), and eXtreme Gradient Boosting (XGBoost)—are employed. These algorithms efficiently handle a substantial volume of taxi GPS data, achieving reduced computational time and model complexity. The proposed framework establishes localized models for each road segment, taking into consideration both geographical and external features that characterize the urban environment. This localized modeling contributes significantly to a more profound understanding of traffic dynamics. A thorough comparative analysis is conducted to assess the performance of the proposed method. Results indicate that incorporating multidimensional urban features is advantageous for traffic speed inference. Among the ensemble learning models, Random Forest outperforms others when dealing with a small missing rate or limited sample size, while XGBoost exhibits superior performance for larger missing rates or substantial sample sizes. Additionally, an analysis of the feature importance in traffic speed highlights that road network features are the most significant factors, followed by temporal characteristics, spatial attributes, POI data, and weather information. Finally, leveraging inferred traffic speed and volume information, emissions from large-scale urban road traffic are inferred based on the COPERT model. In contrast to methods relying on complex, multi-source data for emission estimation, our approach utilizes simple and easily accessible data, enabling precise estimation of emissions on a large-scale spatiotemporal basis.

Funder

Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3