Adaptive behaviors of Drosophila larvae on slippery surfaces

Author:

Guo Li,Sun Yixuan,Liu Sijian

Abstract

AbstractFriction is ubiquitous but an essential force for insects during locomotion. Insects use dedicated bio-mechanical systems such as adhesive pads to modulate the intensity of friction, providing a stable grip with touching substrates for locomotion. However, how to uncover behavioral adaptation and regulatory neural circuits of friction modification is still largely understood. In this study, we devised a novel behavior paradigm to investigate adaptive behavioral alternation of Drosophila larvae under low-friction surfaces. We found a tail looseness phenotype similar to slipping behavior in humans, as a primary indicator to assess the degree of slipping. We found a gradual reduction on slipping level in wild-type larvae after successive larval crawling, coupled with incremental tail contraction, displacement, and speed acceleration. Meanwhile, we also found a strong correlation between tail looseness index and length of contraction, suggesting that lengthening tail contraction may contribute to enlarging the contact area with the tube. Moreover, we found a delayed adaptation in rut mutant larvae, inferring that neural plasticity may participate in slipping adaptation. In conclusion, our paradigm can be easily and reliably replicated, providing a feasible pathway to uncover the behavioral principle and neural mechanism of acclimation of Drosophila larvae to low-friction conditions.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Atomic and Molecular Physics, and Optics,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3