Author:
Ujike Takeshi,Uemura Motohide,Kato Taigo,Hatano Koji,Kawashima Atsunari,Nagahara Akira,Fujita Kazutoshi,Imamura Ryoichi,Nonomura Norio
Abstract
Abstract
Background
Computer-assisted diagnosis (CAD) systems for bone scans have been introduced as clinical quality assurance tools, but few studies have reported on its utility for renal cell carcinoma (RCC) patients. The aim of this study was to assess the diagnostic validity of the CAD system for bone scans and to construct a novel diagnostic system for bone metastases in RCC patients.
Methods
We evaluated bone scan images of 300 RCC patients. Artificial neural network (ANN) values, which represent the probability of abnormality, were calculated by BONENAVI, the CAD software for bone scans. By analyzing ANN values, we assessed the diagnostic validity of BONENAVI. Next, we selected 108 patients who underwent measurements of bone turnover markers and assessed the combined diagnostic validity of BONENAVI and bone turnover markers.
Results
Forty-three out of 300 RCC patients had bone metastases. The AUC of ANN values was 0.764 and the optimum sensitivity and specificity were 83.7 and 62.7%. By logistic analysis of 108 cases, we found that ICTP, a bone resorption marker, could be a diagnostic marker. The AUC of ICTP was 0.776 and the optimum sensitivity and specificity were 57.1 and 86.8%. Subsequently, we developed a novel diagnostic model based on ANN values and ICTP. Using this model, the AUC was 0.849 and the optimum sensitivity and specificity were 76.2 and 80.7%.
Conclusion
By combining the high sensitivity provided by BONENAVI and the high specificity provided by ICTP, we constructed a novel, high-accuracy diagnostic model for bone metastases in RCC patients.
Publisher
Springer Science and Business Media LLC
Subject
Oncology,Hematology,General Medicine,Surgery
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献