Immunobiological effects of lipopolysaccharide derived from Helicobacter pylori and influence of a proton pump inhibitor lansoprazole on human polymorphonuclear leukocytes

Author:

Koshibu Yoji,Ubagai TsuneyukiORCID,Yoshino Yusuke,Ono Yasuo

Abstract

AbstractHelicobacterpylori colonizes the human gastric mucosa of more than half of the human population and has a unique lipopolysaccharide (LPS) structure. LPS is the most dominant and suitable pathogen-associated molecular pattern that is detected via pattern recognition receptors. Although the priming effect of H. pylori LPS on reactive oxygen species (ROS) production of PMNs is lower than that of Escherichia coli O111:B4 LPS, LPS released from H. pylori associated with antibiotics eradication therapy may activate PMNs and increase ROS production. In addition, we describe the effects of H. pylori and E. coli O111:B4 LPSs on gene expression and the anti-inflammatory effect of lansoprazole (LPZ) in human polymorphonuclear leukocytes. LPS isolated from H. pylori and E. coli O111:B4 alters toll-like receptor 2 (TLR) and TLR4 expressions similarly. However, LPS from E. coli O111:B4 and H. pylori caused a 1.8-fold and 1.5-fold increase, respectively, in CD14 expression. All LPS subtypes upregulated TNFα and IL6 expression in a concentration-dependent manner. Although E. coli O111:B4 LPS upregulated IL8R mRNA levels, H. pylori LPS did not (≦ 100 ng/mL). Gene expression levels of ITGAM demonstrated no significant change on using both LPSs. These different effects on the gene expression in PMNs may depend on variations in LPS structural modifications related to the acquired immunomodulatory properties of H. pylori LPS. Proton pump inhibitors, i.e., LPZ, are used in combination with antibiotics for the eradication therapy of H. pylori. LPZ and its acid-activated sulphenamide form AG-2000 suppress ROS production of PMNs in a dose-dependent manner. These results suggest that LPZ combination with antibiotics for H. pylori eradication reduces gastric inflammation by suppressing ROS release from PMNs.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3