Do we still need to screen our patients?—Orthopaedic scoring based on motion tracking

Author:

Raab DominikORCID,Heitzer Falko,Liaw Jin Cheng,Müller Katharina,Weber Lina,Flores Francisco Geu,Kecskeméthy Andrés,Mayer Constantin,Jäger Marcus

Abstract

Abstract Purpose Orthopaedic scores are essential for the clinical assessment of movement disorders but require an experienced clinician for the manual scoring. Wearable systems are taking root in the medical field and offer a possibility for the convenient collection of motion tracking data. The purpose of this work is to demonstrate the feasibility of automated orthopaedic scorings based on motion tracking data using the Harris Hip Score and the Knee Society Score as examples. Methods Seventy-eight patients received a clinical examination and an instrumental gait analysis after hip or knee arthroplasty. Seven hundred forty-four gait features were extracted from each patient’s representative gait cycle. For each score, a hierarchical multiple regression analysis was conducted with a subsequent tenfold cross-validation. A data split of 70%/30% was applied for training/testing. Results Both scores can be reproduced with excellent coefficients of determination R2 for training, testing and cross-validation by applying regression models based on four to six features from instrumental gait analysis as well as the patient-reported parameter ‘pain’ as an offset factor. Conclusion Computing established orthopaedic scores based on motion tracking data yields an automated evaluation of a joint function at the hip and knee which is suitable for direct clinical interpretation. In combination with novel technologies for wearable data collection, these computations can support healthcare staff with objective and telemedical applicable scorings for a large number of patients without the need for trained clinicians.

Funder

Urban Innovative Actions

Universität Duisburg-Essen

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3