Leveraging text mining and analytic hierarchy process for the automatic evaluation of online courses

Author:

Chen Xieling,Xie Haoran,Tao Xiaohui,Wang Fu Lee,Cao Jie

Abstract

AbstractThis study introduced a multi-criteria decision-making methodology leveraging text mining and analytic hierarchy process (AHP) for online course quality evaluation based on students’ feedback texts. First, a hierarchical structure of online course evaluation criteria was formulated by integrating topics (sub-criteria) identified through topic modeling and interpreted based on transactional distance and technology acceptance theories. Second, the weights of the criteria in the hierarchical structure were determined based on topic proportions. Third, the AHP was employed to determine the overall relative advantage of online courses and their relative advantage within each criterion based on the hierarchical framework and criterion weights. The proposed approach was implemented on the datasets of 6940 reviews for knowledge-seeking courses in Art, Design, and Humanities (D1) and 44,697 reviews for skill-seeking courses in Computer Science, Engineering, and Programming (D2) from Class Central to determine ranking positions of nine courses from both D1 and D2 as alternatives. Results revealed common concerns among knowledge and skill-seeking course learners, encompassing “assessment”, “content”, “effort”, “usefulness”, “enjoyment”, “faculty”, “interaction”, and “structure”. The article provides valuable insights into the online course evaluation and selection processes for learners in D1 and D2 groups. Notably, both groups prioritize “effort” and “faculty”, while D2 learners value “assessment” and “enjoyment”, and D1 learners value “usefulness” more. This study demonstrates the efficacy of leveraging online learner reviews and topic modeling for automating MOOC evaluation and informing learners’ decision-making processes.

Funder

National Natural Science Foundation of China

Lingnan University, Hong Kong

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3