A data-driven mixed integer programming approach for joint chance-constrained optimal power flow under uncertainty

Author:

Qin James Ciyu,Jiang Rujun,Mo Huadong,Dong Daoyi

Abstract

AbstractThis paper introduces a novel mixed integer programming (MIP) reformulation for the joint chance-constrained optimal power flow problem under uncertain load and renewable energy generation. Unlike traditional models, our approach incorporates a comprehensive evaluation of system-wide risk without decomposing joint chance constraints into individual constraints, thus preventing overly conservative solutions and ensuring robust system security. A significant innovation in our method is the use of historical data to form a sample average approximation that directly informs the MIP model, bypassing the need for distributional assumptions to enhance solution robustness. Additionally, we implement a model improvement strategy to reduce the computational burden, making our method more scalable for large-scale power systems. Our approach is validated against benchmark systems, i.e., IEEE 14-, 57- and 118-bus systems, demonstrating superior performance in terms of cost-efficiency and robustness, with lower computational demand compared to existing methods.

Funder

Australian Research Council

University of New South Wales

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3