Enhancing framelet GCNs with generalized p-Laplacian regularization

Author:

Shao ZhiqiORCID,Shi Dai,Han Andi,Vasnev Andrey,Guo Yi,Gao Junbin

Abstract

AbstractGraph neural networks (GNNs) have achieved remarkable results for various graph learning tasks. However, one of the recent challenges for GNNs is to adapt to different types of graph inputs, such as heterophilic graph datasets in which linked nodes are more likely to contain a different class of labels and features. Accordingly, an ideal GNN model should adaptively accommodate all types of graph datasets with different labeling distributions. In this paper, we tackle this challenge by proposing a regularization framework on graph framelet with the regularizer induced from graphp-Laplacian. By adjusting the value ofp, thep-Laplacian based regularizer restricts the solution space of graph framelet into the desirable region based on the graph homophilic features. We propose an algorithm to effectively solve a more generalized regularization problem and prove that the algorithm imposes a (p-Laplacian based) spectral convolution and diagonal scaling operation to the framelet filtered node features. Furthermore, we analyze the denoising power of the proposed model and compare it with the predefined framelet denoising regularizer. Finally, we conduct empirical studies to show the prediction power of the proposed model in both homophily undirect and heterophily direct graphs with and without noises. Our proposed model shows significant improvements compared to multiple baselines, and this suggests the effectiveness of combining graph framelet andp-Laplacian.

Funder

University of Sydney

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quasi-framelets: robust graph neural networks via adaptive framelet convolution;International Journal of Machine Learning and Cybernetics;2024-07-26

2. Speed-up Implicit Graph Neural Diffusion Model: A Simplified and Robust Strategy;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3