Knowledge-driven graph similarity for text classification

Author:

Shanavas NilooferORCID,Wang Hui,Lin Zhiwei,Hawe Glenn

Abstract

AbstractAutomatic text classification using machine learning is significantly affected by the text representation model. The structural information in text is necessary for natural language understanding, which is usually ignored in vector-based representations. In this paper, we present a graph kernel-based text classification framework which utilises the structural information in text effectively through the weighting and enrichment of a graph-based representation. We introduce weighted co-occurrence graphs to represent text documents, which weight the terms and their dependencies based on their relevance to text classification. We propose a novel method to automatically enrich the weighted graphs using semantic knowledge in the form of a word similarity matrix. The similarity between enriched graphs, knowledge-driven graph similarity, is calculated using a graph kernel. The semantic knowledge in the enriched graphs ensures that the graph kernel goes beyond exact matching of terms and patterns to compute the semantic similarity of documents. In the experiments on sentiment classification and topic classification tasks, our knowledge-driven similarity measure significantly outperforms the baseline text similarity measures on five benchmark text classification datasets.

Funder

Ulster University

University of Ulster

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3