ETCGN: entity type-constrained graph networks for document-level relation extraction
Author:
Funder
Sichuan Science and Technology Planning Project
Chengdu Science and Technology Project
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s13042-024-02293-2.pdf
Reference40 articles.
1. Cai R, Zhang X, Wang H (2016) Bidirectional recurrent convolutional neural network for relation classification. In: Proceedings of the 54th annual meeting of the association for computational linguistics (volume 1: long papers), pp 756–765
2. Chen F, Wang X, Liu X, Peng D (2023) A trigger-free method enhanced by coreference information for document-level event extraction. In: International joint conference on neural networks, IJCNN 2023, Gold Coast, Australia, June 18–23, 2023. IEEE, pp 1–8. https://doi.org/10.1109/IJCNN54540.2023.10192046
3. Cheng Q, Liu J, Qu X, Zhao J, Liang J, Wang Z, et al. (2021) Hacred: A large-scale relation extraction dataset toward hard cases in practical applications. In: Zong C, Xia F, Li W, Navigli R (eds) Findings of the association for computational linguistics: ACL/IJCNLP 2021, online event, August 1–6, 2021 (vol ACL/IJCNLP 2021). Association for Computational Linguistics, pp 2819–2831. https://doi.org/10.18653/v1/2021.findings-acl.249
4. Christopoulou F, Miwa M, Ananiadou S (2019) Connecting the dots: Documentlevel neural relation extraction with edge-oriented graphs. In: Inui K, Jiang J, Ng V, Wan X (eds) Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3–7, 2019. Association for Computational Linguistics, pp 4924–4935. https://doi.org/10.18653/v1/D19-1498
5. Devlin J, Chang M, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein J, Doran C, Solorio T (eds) Proceedings of the 2019 conference of the north American chapter of the association for computational linguistics: human language technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, vol 1 (long and short papers). Association for Computational Linguistics, pp 4171–4186. https://doi.org/10.18653/v1/n19-1423
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3