Improving cross-lingual language understanding with consistency regularization-based fine-tuning

Author:

Zheng Bo,Che Wanxiang

Funder

National Key R &D Program of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Reference63 articles.

1. Aghajanyan A, Shrivastava A, Gupta A, et al (2020) Better fine-tuning by reducing representational collapse. CoRR. arXiv:2008.03156

2. Artetxe M, Ruder S, Yogatama D (2020) On the cross-lingual transferability of monolingual representations. In: Jurafsky D, Chai J, Schluter N, et al (eds) Proceedings of the 58th annual meeting of the association for computational linguistics, ACL 2020, Online, July 5–10, 2020. Association for Computational Linguistics, pp 4623–4637. https://www.aclweb.org/anthology/2020.acl-main.421/

3. Athiwaratkun B, Finzi M, Izmailov P, et al (2019) There are many consistent explanations of unlabeled data: why you should average. In: 7th international conference on learning representations, ICLR 2019, New Orleans, LA, USA, May 6–9. OpenReview.net, https://openreview.net/forum?id=rkgKBhA5Y7

4. Carmon Y, Raghunathan A, Schmidt L, et al (2019) Unlabeled data improves adversarial robustness. In: Wallach HM, Larochelle H, Beygelzimer A, et al (eds) Advances in neural information processing systems 32: annual conference on neural information processing systems 2019, NeurIPS 2019, 8–14 December 2019, Vancouver, BC, Canada, pp 11190–11201. http://papers.nips.cc/paper/9298-unlabeled-data-improves-adversarial-robustness

5. Chi Z, Dong L, Wei F, et al (2020) InfoXLM: an information-theoretic framework for cross-lingual language model pre-training. CoRR. arXiv:2007.07834

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fine-tuning pretrained transformer encoders for sequence-to-sequence learning;International Journal of Machine Learning and Cybernetics;2023-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3