Physical and chemical characterization of Corchorus olitorius leaves dried by different drying techniques

Author:

Ghellam MohamedORCID,Fatena BüşraORCID,Koca İlkayORCID

Abstract

AbstractMolokhia, Corchorus olitorius, is a popular leafy vegetable, known in many world regions as a good source of nutritional and medicinal properties. Due to its short shelf life and the limited harvesting time, processing such as drying techniques permit to preserve and provide it throughout the year. In the present study, it was attempted to reveal the main physical and chemical characteristics of molokhia leaves. Also, three drying techniques, shade drying (SHD), convective drying (COD), and microwave drying (MID), have been applied to study the kinetics and their main physical and chemical effects. The analysis demonstrated that molokhia leaves are a good source of phenolic compounds, flavonoids, and chlorophylls pigments. Those bioactive compounds have provided the leaves with considerable antiradical scavenging and reducing capacities. Drying time decreased from days, in the case of SHD, to some hours when using COD, and less than 20 min when using MID. Increasing drying temperature and power input have increased the drying rate. Modelling of drying kinetics of MID three power inputs (350, 500 and 750 W) and COD at 60 °C exhibited a high fitting for most empirical models (R2 > 0.980). SHD was less deleterious on leaves colour. Also, it preserved the content of phenolics, flavonoids, and thus the antioxidant activity of leaves. On the contrary, COD at 80 °C had a detrimental effect on previous components and their activity. Vega-Gálvez model can be presented as the best-fitted model to describe the rehydration kinetics of dried leaves. Rheological analysis of the aqueous extracts of the leaves demonstrated the effect of time and grinding on the increase of mucilage diffusion. The obtained results could help industrials to choose the convenient drying method and more analysis on the subject are recommended.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3