Initial Effect of Temperature Rise on α-Synuclein Aggregation – Entropic Forces Drive the Exposure of Protein Hydrophobic Groups Probed by Fluorescence Spectroscopy

Author:

Saraiva Marco A.,Florêncio M. Helena

Abstract

AbstractThe aberrant formation of α-synuclein (Syn) aggregates, varying in size, structure and morphology, has been linked to the development of Parkinson’s disease. In the early stages of Syn aggregation, large protein amyloid aggregates with sizes > 100 nm in hydrodynamic radius have been noticed. These low overall abundant large Syn aggregates are notoriously difficult to study by conventional biophysical methods. Due to the growing importance of studying the early stages of Syn aggregation, we developed a strategy to achieve this purpose, which is the study of the initial effect of the Syn protein aqueous solutions temperature rise. Therefore, the increase of the Syn aqueous solutions entropy by the initial effect of the temperature rise led to the exposure of the protein hydrophobic tyrosyl groups by not interfering with this amyloid protein aggregation. As an attempt to interpret the degree of the referred protein tyrosyl groups exposure, the classic rotameric conformations of the Nα-acetyl-L-tyrosinamide (NAYA) parent compound were used. For both NAYA and Syn, it was determined that the classic rotameric conformations involving the tyrosyl groups indeed accounted for their exposure under steady-state conditions of fluorescence, for lowest molecular species concentrations investigated at least. In this situation, Syn aggregation was observed. For the higher NAYA and Syn concentrations studied, the referred classic rotameric conformation were insufficient in such referred steady-state conditions and, for Syn, in particular, fluorescence anisotropy measurements revealed that less protein aggregation occurs along with its delay. Overall, the developed strategy by focusing on the initial effect of the temperature rise of Syn aqueous solutions in lower concentrations is suitable for informing us about the degree of this protein aggregation in solution.

Funder

Fundação para a Ciência e a Tecnologia

Portuguese Mass Spectrometry Network

Universidade de Lisboa

Publisher

Springer Science and Business Media LLC

Subject

Law,Clinical Biochemistry,Spectroscopy,Sociology and Political Science,Social Sciences (miscellaneous),Clinical Psychology,Biochemistry

Reference18 articles.

1. Emin D, Zhang YP, Lobanova E, Miller A, Li X, Xia Z, Dakin H, Sideris DI, Lam JYL, Ranasinghe RT, Kouli A, Zhao Y, De S, Knowles TPJ, Vendruscolo M, Ruggeri FS, Aigbirhio FI, Williams-Gray CH, Klenerman D (2022) Small soluble α-synuclein aggregates are the toxic species in Parkinson’s disease. Nat Commun 13:5512. https://doi.org/10.1038/s41467-022-33252-6

2. Cremades N, Cohen SIA, Deas E, Abramov AY, Chen AY, Orte A, Sandal M, Clarke RW, Dunne P, Aprile FA, Bertoncini CW, Wood NW, Knowles TPJ, Dobson CM, Klenerman D (2012) Direct observation of the interconversion of normal and toxic forms of α-synuclein. Cell 149:1048–1059. https://doi.org/10.1016/j.cell.2012.03.037

3. Fusco G, Chen SW, Williamson PTF, Cascella R, Perni M, Jarvis JA, Cecchi C, Vendruscolo M, Chiti F, Cremades N, Ying L, Dobson CM, De Simone A (2017) Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. Science 358:1440–1443. https://doi.org/10.1126/science.aan6160

4. Lashuel HA, Overk CR, Oueslati A, Masliah E (2013) The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci 14:38–48. https://doi.org/10.1038/nrn3406

5. Kar M, Dar F, Welsh TJ, Vogel LT, Kühnemuth R, Majumdar A, Krainer G, Franzmann TM, Alberti S, Seidel CAM, Knowles TPJ, Hyman AA, Pappu RV (2022) Phase-separating RNA-binding proteins form heterogeneous distributions of clusters in subsaturated solutions. Proc Natl Acad Sci USA 119:e2202222119. https://doi.org/10.1073/pnas.2202222119

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3