Author:
Nabil Marwa,Megahed Fayed
Abstract
AbstractThe bio-imaging technology is one of the most significant modern applications used in several fields, including early diagnosis of many illnesses that are most important diseases facing humanity and other vital uses. The primary advancement in nanotechnology is the creation of innovative fluorescence probes called quantum dots (QDs). The use of molecular tagging in research, in vivo, and in vitro studies is revolutionized by quantum dots. The application of QD indicates conversion in natural imaging and photography has demonstrated extraordinary appropriateness in bio-imaging, the discovery of novel drugs, and delivery of targeted genes, biosensing, photodynamic therapy, and diagnosis. New potential methods of early cancer detection and treatment management are being researched as a result of the special physical and chemical characteristics of QD probes. The bio-imaging technique depends on the fluorescent emission of the used materials, which is paired with living cells that are easy to see it in 3D without any surgical intervention. Therefore, the use of QDs many types that have unique and appropriate properties for use in that application; In terms of fluorescent emission strength, duration and luminosity.This review article displays some methods of preparation for QDs nanomaterials and the devices used in this. In addition, it presentssome of challenges that must be avoided for the possibility of using them in the bio-imaging field; as toxicity, bio-compatibility, and hydrophilization. It’s reviewed some of the devices that use QDs in bio-imaging technique, the QDs application in cell analysis-imaging, and QDs application in vivo imaging.
Funder
City of Scientific Research and Technological Applications
Publisher
Springer Science and Business Media LLC
Subject
Law,Clinical Biochemistry,Spectroscopy,Sociology and Political Science,Social Sciences (miscellaneous),Clinical Psychology,Biochemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献