"Off/On” Fluorescent Probe based on Aggregation-Induced Quenching of ZnO-Quantum dots for Determination of Ara-C: Pharmacokinetic Applications, Adsorption Kinetics & Green Profile Assessment

Author:

El-Zahry Marwa R.,Ibrahim Rania S.,El-Wadood Hanaa M. Abd,Mohamed Horria A.

Abstract

AbstractHerein, a turn “Off/On” fluorescence probe based on ZnO quantum dots (ZnO-QDs) has been proposed and successfully utilized for the determination of Ara-C (cytarabine) using ceric ions (Ce4+) as quencher and ethylenediamine (ED) as a linker. The probe is based initially on the quenching effect of Ce4+ ions on the strong native fluorescence of ZnO-QDs forming the Turn Off system (Ce@ZnO-QDs) that believed to occur due to the aggregation-induced quenching (AIQ) mechanism. The second step is the addition of Ara-C in the presence of ethylenediamine (ED) that encourages the formation of Ara-C/ED/Ce4+ as well as the release of the free ZnO-QDs, leading to the recovery of the fluorescence intensity. The developed sensing platform shows a linear response towards Ara-C over the range of 10 to 1000 ng mL−1 giving a limit of detection (LOD) and limit of quantitation (LOQ) of 1.22 ng mL−1 and 3.70 ng mL−1, respectively. A dispersive magnetic solid phase micro-extraction (dMSPE) method was developed and optimized for the extraction of Ara-C in spiked human plasma using thiol-modified magnetite nanoparticles (S-MNPs). The proposed platform exhibits good sensitivity toward Ara-C in the presence of different interfering substances. Excellent recoveries are obtained after spiking different concentrations of Ara-C into rabbit plasma samples. The validated experimental parameters have been successfully applied to monitor the pharmacokinetic profile of Ara-C in rabbit plasma. A detailed adsorption kinetics study has been carried out to provide a deep insight into the adsorption behavior of Ara-C on the thiol-doped-magnetite nanoparticles. The greenness assessment of the proposed method was achieved and compared with other reported methods using two tools of greenness; the green analytical procedure index (GAPI) and the analytical greenness calculator AGREE.

Funder

Assiut University

Publisher

Springer Science and Business Media LLC

Subject

Law,Clinical Biochemistry,Spectroscopy,Sociology and Political Science,Social Sciences (miscellaneous),Clinical Psychology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3