Constant-curvature bending response of thin glass: Analytical, numerical and experimental study of “clamp-bending” tests

Author:

Galuppi LauraORCID,Riva Enrica

Abstract

AbstractNew generation thin, lightweight and damage-resistant glass, having impressively impact resistance and ability to be bent up to small radii, appears to be the optimal material for extremely deformable structural elements. Its structural use and design require an accurate evaluation of its mechanical properties. However, standard methods to test the glass strength, as the Four-Point Bending and the Coaxial Double Ring test, cannot be used for thin glass, due to its high deformability. Here, an innovative test is proposed, consisting into deforming a thin element into a costant-curvature shape, by prescribing a rotation on two opposite edges of a rectangular plate, while allowing the adjustment of the distance between the supporting hinges. This produces a deformation into an arch of a circle and to a constant stress distribution, allowing to determine the thin glass strength with very simple formulas. An innovative experimental setup, recently proposed for twisting tests on thin glass, has been adapted for constant-curvature bending tests, based on the results of both analytical modelling and numerical analyses. This has been used to perform an experimental campaign, comprising 15 destructive tests on chemically tempered thin glass.

Funder

Fondazione Cariparma

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3