Investigations on the influence of manufacturing and curing effects on the properties of structural-glazing adhesives subjected to tensile stresses

Author:

Müller PaulORCID,Schuler Christian,Siebert Geralt

Abstract

AbstractDemand for structural glazing joints has increased considerably in recent years due to the ever-increasing loads resulting from growing dimensions, especially in spectacular glass structures. Within the scope of planning and production monitoring, existing influences are analyzed based on the standard H-sample from the current structural glazing guidelines. These guidelines do not define any specific methodology or guidance for manufacturing test specimens. For determining load-bearing properties, various parameters, such as specimen age and curing condition, have a relevant influence during and after manufacturing. This study aims to investigate the manufacturing process for H-specimens systematically to identify and minimize the interfering influences. On this basis, the influence of the curing of modified H-specimens was investigated in detail for specimens under tensile load. Next to curing at room temperature, tempering at 40 °C was investigated for two different H-joint geometries. Thereby, a relevant influence of specimen age and different curing conditions on the strength as well as stiffness properties could be determined. As one result of the study, the curing time can be shortened by tempering the specimens in relation to the specified 28 days by ETAG 002-1. For calculation methods used in practice, like the structural spring method, suggestions for statistically validated strength and stiffness parameters representing the load-bearing behavior are proposed, considering the adhesive’s curing state and the joint’s nominal stress.

Funder

Hochschule für angewandte Wissenschaften München

Publisher

Springer Science and Business Media LLC

Subject

Building and Construction,Architecture,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3