Reuse potential of architectural glass: experimental study on the strength of used window glazing

Author:

Cupać JagodaORCID,Datsiou Kyriaki CorinnaORCID,Louter ChristianORCID

Abstract

AbstractGlass is a highly durable and infinitely recyclable material, yet in practice only a small portion of architectural glass products re-enters the value chain after its first use. An increasing rate of energy retrofits of the EU building stock will result in replacement of 85% of existing windows in near future; in the current linear glass supply chain, this will generate large amounts of glass waste. Despite high recycling rates of container glass in Europe, window glazing is very rarely recycled into new glazing, and reuse is almost entirely unexplored. For aged glazing to be reused in construction, better knowledge of its surface quality and structural performance is needed. The main objective of this paper is to explore the effects of ageing and exposure to indoor and outdoor environment on the strength of glass. A comparative investigation is undertaken to evaluate the strength and surface quality of the internally, externally and cavity-facing glass surfaces of insulating glass units (IGUs) after 30 years of use in a building envelope in the Netherlands. The glass panes are separated from the IGU assembly and cut into specimens for microscopy and coaxial double ring tests. The study shows that the visual quality is best preserved on the cavity-facing surface, consequently exhibiting the highest bending strength. The internally and externally facing surfaces, with visibly more extensive damage, exhibited similarly lower strengths at low probabilities of failure. When compared to the design strength of new annealed glass acc. to EN 16612, all the surfaces showed a reuse potential, with considerable bending strength.

Funder

Technische Universität Dresden

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3